Displaying 141 – 160 of 194

Showing per page

Arithmetic Hilbert modular functions (II).

Walter L. Baily Jr. (1985)

Revista Matemática Iberoamericana

The purpose of this paper, which is a continuation of [2, 3], is to prove further results about arithmetic modular forms and functions. In particular we shall demonstrate here a q-expansion principle which will be useful in proving a reciprocity law for special values of arithmetic Hilbert modular functions, of which the classical results on complex multiplication are a special case. The main feature of our treatment is, perhaps, its independence of the theory of abelian varieties.

Arithmetic of the modular function j 1 , 4

Chang Heon Kim, Ja Kyung Koo (1998)

Acta Arithmetica

We find a generator j 1 , 4 of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator N ( j 1 , 4 ) which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.

Currently displaying 141 – 160 of 194