Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie
Sia un'algebra di quaternioni indefinita su di discriminante divisibile per un primo . Introduciamo lo spazio delle forme automorfe quaternioniche di livello e l'algebra degli operatori di Hecke che vi agisce. Utilizzando la corrispondenza di Jacquet-Langlands mostriamo che quest'algebra è un quoziente di un'algebra di Hecke classica (privata dell'operatore ). Ne deduciamo proprietà di finitezza e di compatibilità per cambiamento di base per l'algebra di Hecke quaternionica.
On donne une nouvelle condition suffisante pour l’existence des mesures -adiques admissibles obtenues à partir de suites de distributions à valeurs dans les espaces de formes modulaires. On utilise la projection caractéristique sur le sous-espace primaire associé à une valeur propre non nulle de l’opérateur d’Atkin. Notre condition est exprimée en termes des congruences entre les coefficients de Fourier des formes modulaires . On montre comment vérifier ces congruences, et on traite plusieurs...
We show the surjectivity of the (global) Siegel -operator for modular forms for certain congruence subgroups of and weight , where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.
On définit, en réponse à une question de Sarnak dans sa lettre a Bombieri [Sar01], un accouplement symplectique sur l’interprétation spectrale (due à Connes et Meyer) des zéros de la fonction zêta. Cet accouplement donne une formulation purement spectrale de la démonstration de l’équation fonctionnelle due à Tate, Weil et Iwasawa, qui, dans le cas d’une courbe sur un corps fini, correspond à la démonstration géométrique usuelle par utilisation de l’accouplement de dualité de Poincaré Frobenius-équivariant...
We provide a formula for the symplectic period of an Eisenstein series on and determine when it is not identically zero.
Let be the Jacobian of the modular curve associated with and the one associated with . We study as a Hecke and Galois-module. We relate a certain matrix of -adic periods to the infinitesimal deformation of the -operator.