Displaying 341 – 360 of 1274

Showing per page

Espaces homogènes principaux, unités elliptiques et fonctions L

Philippe Cassou-Noguès, Martin J. Taylor (1994)

Annales de l'institut Fourier

Nous étudions la structure de certains espaces homogènes principaux associés aux éléments du groupe de Selmer d’une courbe elliptique à multiplication complexe. Nous utilisons des résultats de Rubin pour construire, à partir des unités elliptiques, des espaces homogènes principaux de structure galoisienne non triviale. Cette construction fournit un lien nouveau entre un problème de structure galoisienne et certaines fonctions L - p -adiques.

Étale cohomology and reduction of abelian varieties

A. Silverberg, Yu. G. Zarhin (2001)

Bulletin de la Société Mathématique de France

In this paper we study the étale cohomology groups associated to abelian varieties. We obtain necessary and sufficient conditions for an abelian variety to have semistable reduction (or purely additive reduction which becomes semistable over a quadratic extension) in terms of the action of the absolute inertia group on the étale cohomology groups with finite coefficients.

Étude de L ( s , χ ) / π s pour des fonctions L relatives à 𝔽 q ( ( T - 1 ) ) et associées à des caractères de degré 1

Gilles Damamme (1999)

Journal de théorie des nombres de Bordeaux

Carlitz a défini pour les corps de fonctions l’analogue du réel π et Goss l’analogue des fonctions L de Dirichlet. Nous prouvons dans un cas particulier qu’il existe des valeurs entières s et des caractères χ pour lesquels L ( s , χ ) / π 8 peut être rationnel, algébrique ou bien transcendant.

Étude d'un idéal particulier, d'indice fini dans le carré de l'idéal d'augmentation, associé à un caractère de Dirichlet d'un groupe fini

Hassan Oukhaba, Gilles Robert (1991)

Journal de théorie des nombres de Bordeaux

We describe here two sets of generators of an ideal Δ ( ψ ) = M ( ψ ) , of finite index inside the square I 2 of the augmentation ideal I of [ G ] , associated to the Dirichlet character ψ of the finite group G . That peculiar ideal first appeared in questions related to the computation of class number formulas for abelian non ramified extensions of 𝒜 -fields cf. [2] and [3], satisfying certain special conditions which are outlined in the introduction of [1]. A rough idea of these formulas is given in §§2 and 6.

Euler system for Galois deformations

Tadashi Ochiai (2005)

Annales de l’institut Fourier

In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the...

Explicit bounds for split reductions of simple abelian varieties

Jeffrey D. Achter (2012)

Journal de Théorie des Nombres de Bordeaux

Let X / K be an absolutely simple abelian variety over a number field; we study whether the reductions X 𝔭 tend to be simple, too. We show that if End ( X ) is a definite quaternion algebra, then the reduction X 𝔭 is geometrically isogenous to the self-product of an absolutely simple abelian variety for 𝔭 in a set of positive density, while if X is of Mumford type, then X 𝔭 is simple for almost all 𝔭 . For a large class of abelian varieties with commutative absolute endomorphism ring, we give an explicit upper bound...

Currently displaying 341 – 360 of 1274