Displaying 1161 – 1180 of 1274

Showing per page

The tangent complex to the Bloch-Suslin complex

Jean-Louis Cathelineau (2007)

Bulletin de la Société Mathématique de France

Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of SL 2 . The tangent complex to the trilogarithmic complex of Goncharov is also considered.

The Tate pairing for Abelian varieties over finite fields

Peter Bruin (2011)

Journal de Théorie des Nombres de Bordeaux

In this expository note, we describe an arithmetic pairing associated to an isogeny between Abelian varieties over a finite field. We show that it generalises the Frey–Rück pairing, thereby giving a short proof of the perfectness of the latter.

Théorème de Hilbert-Samuel «arithmétique»

Ahmed Abbes, Thierry Bouche (1995)

Annales de l'institut Fourier

On donne une nouvelle démonstration directe du théorème de Hilbert-Samuel arithmétique et on déduit un critère numérique pour l’existence de sections d’un fibré en droite sur une variété arithmétique de norme sup inférieure à un.

Théorie de Fontaine en égales caractéristiques

Alain Genestier, Vincent Lafforgue (2011)

Annales scientifiques de l'École Normale Supérieure

Les chtoucas locaux sont des analogues en égales caractéristiques des groupes p -divisibles — par exemple on leur associe un module de Tate, qui est un module libre sur l’anneau d’entiers d’un corps local K de caractéristique positive. Nous associons à un chtouca local une structure de Hodge (ou, plus précisément, une structure de Hodge-Pink), ce qui induit un morphisme de périodes analogue à celui construit par Rapoport et Zink. Pour les structures de Hodge-Pink définies sur une extension finie...

Theta height and Faltings height

Fabien Pazuki (2012)

Bulletin de la Société Mathématique de France

Using original ideas from J.-B. Bost and S. David, we provide an explicit comparison between the Theta height and the stable Faltings height of a principally polarized Abelian variety. We also give as an application an explicit upper bound on the number of K -rational points of a curve of genus g 2 under a conjecture of S. Lang and J. Silverman. We complete the study with a comparison between differential lattice structures.

Thetanullwerte: from periods to good equations.

Jordi Guàrdia (2007)

Publicacions Matemàtiques

We will show the utility of the classical Jacobi Thetanullwerte for the description of certain period lattices of elliptic curves, providing equations with good arithmetical properties. These equations will be the starting point for the construction of families of elliptic curves with everywhere good reduction.[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].

Torsion and Tamagawa numbers

Dino Lorenzini (2011)

Annales de l’institut Fourier

Let K be a number field, and let A / K be an abelian variety. Let c denote the product of the Tamagawa numbers of A / K , and let A ( K ) tors denote the finite torsion subgroup of A ( K ) . The quotient c / | A ( K ) tors | is a factor appearing in the leading term of the L -function of A / K in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over or quadratic extensions K / , and for abelian surfaces A / . The smallest possible ratio...

Torsion des courbes elliptiques sur les corps cubiques

Pierre Parent (2000)

Annales de l'institut Fourier

On donne la liste (à un élément près) des nombres premiers qui sont l’ordre d’un point de torsion d’une courbe elliptique sur un corps de nombres de degré trois.

Currently displaying 1161 – 1180 of 1274