Displaying 21 – 40 of 72

Showing per page

Diophantine inequalities with power sums

Amedeo Scremin (2007)

Journal de Théorie des Nombres de Bordeaux

The ring of power sums is formed by complex functions on of the form α ( n ) = b 1 c 1 n + b 2 c 2 n + ... + b h c h n , for some b i ¯ and c i . Let F ( x , y ) ¯ [ x , y ] be absolutely irreducible, monic and of degree at least 2 in y . We consider Diophantine inequalities of the form | F ( α ( n ) , y ) | < | F y ( α ( n ) , y ) | · | α ( n ) | - ε and show that all the solutions ( n , y ) × have y parametrized by some power sums in a finite set. As a consequence, we prove that the equation F ( α ( n ) , y ) = f ( n ) , with f [ x ] not constant, F monic in y and α not constant, has only finitely many solutions.

Finiteness of odd perfect powers with four nonzero binary digits

Pietro Corvaja, Umberto Zannier (2013)

Annales de l’institut Fourier

We prove that there are only finitely many odd perfect powers in having precisely four nonzero digits in their binary expansion. The proofs in fact lead to more general results, but we have preferred to limit ourselves to the present statement for the sake of simplicity and clarity of illustration of the methods. These methods combine various ingredients: results (derived from the Subspace Theorem) on integer values of analytic series at S -unit points (in a suitable ν -adic convergence), Roth’s...

Heights, regulators and Schinzel's determinant inequality

Shabnam Akhtari, Jeffrey D. Vaaler (2016)

Acta Arithmetica

We prove inequalities that compare the size of an S-regulator with a product of heights of multiplicatively independent S-units. Our upper bound for the S-regulator follows from a general upper bound for the determinant of a real matrix proved by Schinzel. The lower bound for the S-regulator follows from Minkowski's theorem on successive minima and a volume formula proved by Meyer and Pajor. We establish similar upper bounds for the relative regulator of an extension l/k of number fields.

Imbrications entre le théorème de Mason, la descente de Belyi et les différentes formes de la conjecture ( a b c )

Michel Langevin (1999)

Journal de théorie des nombres de Bordeaux

Soient A , B , C = A + B trois éléments de l’ensemble * des entiers > 0 (resp. [ X ] ) des polynômes complexes) premiers entre eux ; on note r ( A B C ) le produit des facteurs premiers (resp. le nombre des facteurs premiers dans [ X ] ) du produit A B C . La conjecture ( a b c ) énonce que, pour tout ϵ > 0 , il existe C ϵ > 0 pour lequel l’inégalité : r ( A B C ) C ϵ S 1 - ϵ avec S = max ( A , B , C ) ) est toujours vérifiée. Le théorème de Mason établit l’inégalité, D (supposé > 0 ) désignant le plus grand des degrés des polynômes A , B , C : r ( A B C ) D + 1 . Les cas de triplets de polynômes où l’égalité...

Multiplicative relations on binary recurrences

Florian Luca, Volker Ziegler (2013)

Acta Arithmetica

Given a binary recurrence u n n 0 , we consider the Diophantine equation u n 1 x 1 u n L x L = 1 with nonnegative integer unknowns n 1 , . . . , n L , where n i n j for 1 ≤ i < j ≤ L, m a x | x i | : 1 i L K , and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.

Currently displaying 21 – 40 of 72