Diophantine inequalities for the non-Archimedean line
Chih-Nung Hsu (2001)
Acta Arithmetica
Robert Franz Tichy (1994)
Mathematica Slovaca
Amedeo Scremin (2007)
Journal de Théorie des Nombres de Bordeaux
The ring of power sums is formed by complex functions on of the formfor some and . Let be absolutely irreducible, monic and of degree at least in . We consider Diophantine inequalities of the formand show that all the solutions have parametrized by some power sums in a finite set. As a consequence, we prove that the equationwith not constant, monic in and not constant, has only finitely many solutions.
J. F., Koksma (1933)
Mathematische Zeitschrift
E. Bombieri, A. J. Van der Poorten, J. D. Vaaler (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Pietro Corvaja, Umberto Zannier (2013)
Annales de l’institut Fourier
We prove that there are only finitely many odd perfect powers in having precisely four nonzero digits in their binary expansion. The proofs in fact lead to more general results, but we have preferred to limit ourselves to the present statement for the sake of simplicity and clarity of illustration of the methods. These methods combine various ingredients: results (derived from the Subspace Theorem) on integer values of analytic series at -unit points (in a suitable -adic convergence), Roth’s...
Laurent Denis (1992)
Mathematische Annalen
Shabnam Akhtari, Jeffrey D. Vaaler (2016)
Acta Arithmetica
We prove inequalities that compare the size of an S-regulator with a product of heights of multiplicatively independent S-units. Our upper bound for the S-regulator follows from a general upper bound for the determinant of a real matrix proved by Schinzel. The lower bound for the S-regulator follows from Minkowski's theorem on successive minima and a volume formula proved by Meyer and Pajor. We establish similar upper bounds for the relative regulator of an extension l/k of number fields.
Michel Langevin (1999)
Journal de théorie des nombres de Bordeaux
Soient trois éléments de l’ensemble des entiers > (resp. ) des polynômes complexes) premiers entre eux ; on note le produit des facteurs premiers (resp. le nombre des facteurs premiers dans ) du produit . La conjecture énonce que, pour tout , il existe pour lequel l’inégalité : avec max) est toujours vérifiée. Le théorème de Mason établit l’inégalité, (supposé > ) désignant le plus grand des degrés des polynômes . Les cas de triplets de polynômes où l’égalité...
Michel Laurent, Arnaldo Nogueira (2012)
Acta Arithmetica
M. C. Lettington (2009)
Acta Arithmetica
K. Győry, Min Ru (1998)
Acta Arithmetica
M. Dodson, B. Rynne, J. Vickers (1991)
Acta Arithmetica
A. Dubickas (2004)
Rendiconti del Seminario Matematico della Università di Padova
Delshams, Amadeu, Gelfreich, Vassili, Jorba, Àngel, Seara, Tere M. (1997)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Yann Bugeaud (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
Florian Luca, Volker Ziegler (2013)
Acta Arithmetica
Given a binary recurrence , we consider the Diophantine equation with nonnegative integer unknowns , where for 1 ≤ i < j ≤ L, , and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.
Iskander Aliev (2002)
Acta Arithmetica
Alessandro Languasco, Valentina Settimi (2012)
Acta Arithmetica
Alessandro Languasco, Alessandro Zaccagnini (2010)
Acta Arithmetica