Page 1 Next

Displaying 1 – 20 of 28

Showing per page

On Baker type lower bounds for linear forms

Tapani Matala-aho (2016)

Acta Arithmetica

A criterion is given for studying (explicit) Baker type lower bounds of linear forms in numbers 1 , Θ 1 , . . . , Θ m * over the ring of an imaginary quadratic field . This work deals with the simultaneous auxiliary functions case.

On perfect powers in k -generalized Pell sequence

Zafer Şiar, Refik Keskin, Elif Segah Öztaş (2023)

Mathematica Bohemica

Let k 2 and let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence defined by P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 with initial conditions P - ( k - 2 ) ( k ) = P - ( k - 3 ) ( k ) = = P - 1 ( k ) = P 0 ( k ) = 0 , P 1 ( k ) = 1 . In this study, we handle the equation P n ( k ) = y m in positive integers n , m , y , k such that k , y 2 , and give an upper bound on n . Also, we will show that the equation P n ( k ) = y m with 2 y 1000 has only one solution given by P 7 ( 2 ) = 13 2 .

On terms of linear recurrence sequences with only one distinct block of digits

Diego Marques, Alain Togbé (2011)

Colloquium Mathematicae

In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.

On the diophantine equation ( x m + 1 ) ( x n + 1 ) = y ²

Maohua Le (1997)

Acta Arithmetica

1. Introduction. Let ℤ, ℕ, ℚ be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation    (1) ( x m + 1 ) ( x n + 1 ) = y ² , x,y,m,n ∈ ℕ, x > 1, n > m ≥ 1, has no solution (x,y,m,n) with 2|x and (1) has only finitely many solutions (x,y,m,n) with 2∤x. Moreover, all solutions of (1) with 2∤x satisfy max(x,m,n) < C, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows.   Theorem. Equation (1)...

On the distance between generalized Fibonacci numbers

Jhon J. Bravo, Carlos A. Gómez, Florian Luca (2015)

Colloquium Mathematicae

For an integer k ≥ 2, let ( F ( k ) ) be the k-Fibonacci sequence which starts with 0,..., 0,1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.

On the exponential local-global principle

Boris Bartolome, Yuri Bilu, Florian Luca (2013)

Acta Arithmetica

Skolem conjectured that the "power sum" A(n) = λ₁α₁ⁿ + ⋯ + λₘαₘⁿ satisfies a certain local-global principle. We prove this conjecture in the case when the multiplicative group generated by α₁,...,αₘ is of rank 1.

On the intersection of two distinct k -generalized Fibonacci sequences

Diego Marques (2012)

Mathematica Bohemica

Let k 2 and define F ( k ) : = ( F n ( k ) ) n 0 , the k -generalized Fibonacci sequence whose terms satisfy the recurrence relation F n ( k ) = F n - 1 ( k ) + F n - 2 ( k ) + + F n - k ( k ) , with initial conditions 0 , 0 , , 0 , 1 ( k terms) and such that the first nonzero term is F 1 ( k ) = 1 . The sequences F : = F ( 2 ) and T : = F ( 3 ) are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation F n ( k ) = F m ( ) . In this note, we use transcendental tools to provide a general method for finding the intersections F ( k ) F ( m ) which gives evidence supporting...

Currently displaying 1 – 20 of 28

Page 1 Next