On the products of Hecke L-functions of holomorphic cusp forms
Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of . If with , then we obtain . We also show how our method of proof yields the bound , where T 1/5+ε≤G≪T, T
Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of . If E *(t)=E(t)-2πΔ*(t/2π) with , then we obtain and It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of .
We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].
We give explicit constants κ such that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ κ, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0. These constants are larger than the previous ones κ = 1- log 2 = 0.306... and κ = 0.367... we obtained elsewhere.