The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 221 –
232 of
232
We define Witten multiple zeta-functions associated with semisimple Lie algebras , of several complex variables, and prove the analytic continuation of them. These can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case , we determine the singularities of this function. Furthermore we prove certain functional relations among this function, the Mordell-Tornheim double zeta-functions and the Riemann zeta-function. Using these relations, we prove...
In the paper the asymptotics for Dirichlet polynomials associated to certain cusp forms are obtained.
A formula for the mean value of multiplicative functions associated to certain cusp forms is obtained. The paper is a continuation of [4].
L’article donne des réponses optimales ou presque optimales aux questions suivantes, qui remontent à Stieltjes, Landau et Bohr, et concernent des séries de Dirichlet
On étudie sommairement la distribution des valeurs de ( : caractère de Dirichlet primitif réel) et on constate qu’on a en général ; on démontre par ailleurs que si , alors ( : conducteur de ; : constante positive effectivement calculable.
Mertens’ product formula asserts thatas . Calculation shows that the right side of the formula exceeds the left side for . It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on , this and a complementary inequality might change their sense for sufficiently large values of . We show this to be the case.
Currently displaying 221 –
232 of
232