Displaying 1361 – 1380 of 1791

Showing per page

Sommes des chiffres de multiples d'entiers

Cécile Dartyge, Gérald Tenenbaum (2005)

Annales de l'institut Fourier

Soit q , q 2 . Pour n , on note s q ( n ) la somme des chiffres de n en base q . Nous donnons des majorations de sommes d’exponentielles de la forme G ( x , y , θ ; α , 𝐡 ) = x < n x + y exp ( 2 i π ( α 1 s q ( h 1 n ) + + α r s q ( h r n ) + θ n ) ) , pour r * , 𝐡 * r et θ r . De telles sommes ont déjà été étudiées dans le cas r = 1 par Gelfond, et pour r 2 entre autre par Coquet et Solinas. Nos résultats étendent le domaine de validité en 𝐡 de ces précédents travaux pour r 2 , sont plus précis et ont l’avantage d’être uniformes en x et r et effectifs en 𝐡 . Ce contrôle soigneux des paramètres nous permet d’obtenir divers types d’applications....

Sum of higher divisor function with prime summands

Yuchen Ding, Guang-Liang Zhou (2023)

Czechoslovak Mathematical Journal

Let l 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function 1 n 1 , n 2 , ... , n l x 1 / 2 τ k ( n 1 2 + n 2 2 + + n l 2 ) , where τ k ( n ) represents the k th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum 1 p 1 , p 2 , ... , p l x τ k ( p 1 + p 2 + + p l ) , where p 1 , p 2 , , p l are prime variables.

Currently displaying 1361 – 1380 of 1791