Displaying 41 – 60 of 461

Showing per page

Another look at real quadratic fields of relative class number 1

Debopam Chakraborty, Anupam Saikia (2014)

Acta Arithmetica

The relative class number H d ( f ) of a real quadratic field K = ℚ (√m) of discriminant d is defined to be the ratio of the class numbers of f and K , where K denotes the ring of integers of K and f is the order of conductor f given by + f K . R. Mollin has shown recently that almost all real quadratic fields have relative class number 1 for some conductor. In this paper we give a characterization of real quadratic fields with relative class number 1 through an elementary approach considering the cases when...

Artin's primitive root conjecture for quadratic fields

Hans Roskam (2002)

Journal de théorie des nombres de Bordeaux

Fix an element α in a quadratic field K . Define S as the set of rational primes p , for which α has maximal order modulo p . Under the assumption of the generalized Riemann hypothesis, we show that S has a density. Moreover, we give necessary and sufficient conditions for the density of S to be positive.

Bicyclic commutator quotients with one non-elementary component

Daniel Mayer (2023)

Mathematica Bohemica

For any number field K with non-elementary 3 -class group Cl 3 ( K ) C 3 e × C 3 , e 2 , the punctured capitulation type ϰ ( K ) of K in its unramified cyclic cubic extensions L i , 1 i 4 , is an orbit under the action of S 3 × S 3 . By means of Artin’s reciprocity law, the arithmetical invariant ϰ ( K ) is translated to the punctured transfer kernel type ϰ ( G 2 ) of the automorphism group G 2 = Gal ( F 3 2 ( K ) / K ) of the second Hilbert 3 -class field of K . A classification of finite 3 -groups G with low order and bicyclic commutator quotient G / G ' C 3 e × C 3 , 2 e 6 , according to the algebraic invariant...

Calcul du nombre de classes d'un corps quadratique imaginaire ou réel, d'après Shanks, Williams, McCurley, A. K. Lenstra et Schnorr

Henri Cohen (1989)

Journal de théorie des nombres de Bordeaux

Dans cette note nous décrivons différentes méthodes utilisées en pratique pour calculer le nombre de classes d'un corps quadratique imaginaire ou réel ainsi que pour calculer le régulateur d'un corps quadratique réel. En particulier nous décrivons l'infrastructure de Shanks ainsi que la méthode sous-exponentielle de McCurley.

Class groups of large ranks in biquadratic fields

Mahesh Kumar Ram (2024)

Czechoslovak Mathematical Journal

For any integer n > 1 , we provide a parametric family of biquadratic fields with class groups having n -rank at least 2. Moreover, in some cases, the n -rank is bigger than 4.

Currently displaying 41 – 60 of 461