On the classification of Hilbert Modular threefolds.
Let ϵ be a totally real cubic algebraic unit. Assume that the cubic number field ℚ(ϵ) is Galois. Let ϵ, ϵ' and ϵ'' be the three real conjugates of ϵ. We tackle the problem of whether {ϵ,ϵ'} is a system of fundamental units of the cubic order ℤ[ϵ,ϵ',ϵ'']. Given two units of a totally real cubic order, we explain how one can prove that they form a system of fundamental units of this order. Several explicit families of totally real cubic orders defined by parametrized families of cubic polynomials...
We study the capitulation of -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields , where and are different primes. For each of the three quadratic extensions inside the absolute genus field of , we determine a fundamental system of units and then compute the capitulation kernel of . The generators of the groups and are also determined from which we deduce that is smaller than the relative genus field . Then we prove that each...
Let be an imaginary cyclic quartic number field whose 2-class group is of type , i.e., isomorphic to . The aim of this paper is to determine the structure of the Iwasawa module of the genus field of .
Lately, explicit upper bounds on (for primitive Dirichlet characters ) taking into account the behaviors of on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other...
A number field , with ring of integers , is said to be a Pólya field if the -algebra formed by the integer-valued polynomials on admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of in a Pólya field. We give a positive answer to this embedding problem by showing that...
For an algebraic number field with -class group of type , the structure of the -class groups of the four unramified cyclic cubic extension fields , , of is calculated with the aid of presentations for the metabelian Galois group of the second Hilbert -class field of . In the case of a quadratic base field it is shown that the structure of the -class groups of the four -fields frequently determines the type of principalization of the -class group of in . This provides...