Sur la construction d'un corps de Hilbert.
Étant donné un corps de nombres et un nombre premier , soit le sous-module de -torsion du groupe de Galois de la -extension abélienne -ramifiée maximale de . On se propose d’étudier la structure de module galoisien de . Si vérifie la conjecture de Leopoldt, contient un sous-module formé des racines -primaires de l’unité semi-locales quotientées par les racines -primaires de l’unité globales, et le quotient de par ce sous-module peut s’interpréter de deux façons : soit comme les...
Suite aux travaux de R. Schoof et de H.W. Lenstra–R. Schoof, nous donnons une méthode permettant de trouver, pour tout premier ne divisant pas , un système de générateurs du -groupe des classes relatives du corps abélien imaginaire , ceci avec la seule connaissance de nombres de Bernoulli . Des exemples numériques sont donnés pour et , dans le cadre des extensions cycliques de degré 2 et 4. Le premier exemple de -groupe des classes possédant une -composante non monogène (pour un caractère...
Pour décrire la structure galoisienne à -isomorphisme près du quotient par du groupe des unités d’une extension abélienne absolue de groupe de Galois de type , on amorce la description des -modules de type fini libres sur dont le caractère est contenu dans la représentation d’augmentation. La classification est complète pour les modules de rang inférieur ou égal à 3 ; elle est appliquée à la description donnée par T. Kubota des unités d’un corps biquadratique non cyclique en fonction des...
On considère dans cet article les pro--extensions maximales à ramification restreinte au-dessus de la -extension cyclotomique d’un corps de nombres. Leur groupe de Galois est étudié, d’abord à travers le rang de la partie -libre de leur abélianisé, puis par leurs nombres minimaux de générateurs et de relations. Pour cela, on utilise la théorie des corps de classes, et on reprend les éléments de l’étude par Koch des pro--extensions à ramification restreinte maximales, qui fonctionnent dans ce...