Lower bounds for discriminants of number fields
Let be a semistable elliptic curve over . We prove weak forms of Kato’s -congruences for the special values More precisely, we show that they are true modulo , rather than modulo . Whilst not quite enough to establish that there is a non-abelian -function living in , they do provide strong evidence towards the existence of such an analytic object. For example, if these verify the numerical congruences found by Tim and Vladimir Dokchitser.
In this work we prove various cases of the so-called “torsion congruences” between abelian -adic -functions that are related to automorphic representations of definite unitary groups. These congruences play a central role in the non-commutative Iwasawa theory as it became clear in the works of Kakde, Ritter and Weiss on the non-abelian Main Conjecture for the Tate motive. We tackle these congruences for a general definite unitary group of variables and we obtain more explicit results in the...
Let be an odd prime number with q an odd integer. Let δ (resp. φ) be an odd (resp. even) Dirichlet character of conductor p and order (resp. order dividing q), and let ψₙ be an even character of conductor and order pⁿ. We put χ = δφψₙ, whose value is contained in . It is well known that the Bernoulli number is not zero, which is shown in an analytic way. In the extreme cases and q, we show, in an algebraic and elementary manner, a stronger nonvanishing result: for any pⁿth root ξ...