A note on the ideal class group of the cyclotomic ℤₚ-extension of a totally real number field
Let be a modular elliptic curve, and let be an imaginary quadratic field. We show that the -Selmer group of over certain finite anticyclotomic extensions of , modulo the universal norms, is annihilated by the «characteristic ideal» of the universal norms modulo the Heegner points. We also extend this result to the anticyclotomic -extension of . This refines in the current contest a result of [1].
Nous construisons un analogue «tordu» de la -tour de corps de classes d’un corps de nombres ( un nombre premier) et étudions ses liens avec la théorie d’Iwasawa. Le résultat principal donne un critère du type Golod et Shafarevich pour que la tour «tordue» soit infinie.
We study the Iwasawa theory of a CM elliptic curve in the anticyclotomic -extension of the CM field, where is a prime of good, ordinary reduction for . When the complex -function of vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the -power Selmer group over the anticyclotomic extension is a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg show that it is not a torsion module. In...