Displaying 201 – 220 of 457

Showing per page

Jacobi symbols, ambiguous ideals, and continued fractions

R. A. Mollin (1998)

Acta Arithmetica

The purpose of this paper is to generalize some seminal results in the literature concerning the interrelationships between Legendre symbols and continued fractions. We introduce the power of ideal theory into the arena. This allows significant improvements over the existing results via the infrastructure of real quadratic fields.

Lower bound for class numbers of certain real quadratic fields

Mohit Mishra (2023)

Czechoslovak Mathematical Journal

Let d be a square-free positive integer and h ( d ) be the class number of the real quadratic field ( d ) . We give an explicit lower bound for h ( n 2 + r ) , where r = 1 , 4 . Ankeny and Chowla proved that if g > 1 is a natural number and d = n 2 g + 1 is a square-free integer, then g h ( d ) whenever n > 4 . Applying our lower bounds, we show that there does not exist any natural number n > 1 such that h ( n 2 g + 1 ) = g . We also obtain a similar result for the family ( n 2 g + 4 ) . As another application, we deduce some criteria for a class group of prime power order to be cyclic.

Making sense of capitulation: reciprocal primes

David Folk (2016)

Acta Arithmetica

Let ℓ be a rational prime, K be a number field that contains a primitive ℓth root of unity, L an abelian extension of K whose degree over K, [L:K], is divisible by ℓ, a prime ideal of K whose ideal class has order ℓ in the ideal class group of K, and a any generator of the principal ideal . We will call a prime ideal of K ’reciprocal to ’ if its Frobenius element generates G a l ( K ( a ) / K ) for every choice of a . We then show that becomes principal in L if and only if every reciprocal prime is not a norm inside...

Maximal unramified extensions of imaginary quadratic number fields of small conductors

Ken Yamamura (1997)

Journal de théorie des nombres de Bordeaux

We determine the structures of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 420 ( 719 under the Generalized Riemann Hypothesis). For all such K , K u r is K , the Hilbert class field of K , the second Hilbert class field of K , or the third Hilbert class field of K . The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class...

Currently displaying 201 – 220 of 457