Displaying 41 – 60 of 453

Showing per page

Annihilators of the class group of a compositum of quadratic fields

Jan Herman (2013)

Archivum Mathematicum

This paper is devoted to a construction of new annihilators of the ideal class group of a tamely ramified compositum of quadratic fields. These annihilators are produced by a modified Rubin’s machinery. The aim of this modification is to give a stronger annihilation statement for this specific type of fields.

Calcul du nombre de classes d'un corps quadratique imaginaire ou réel, d'après Shanks, Williams, McCurley, A. K. Lenstra et Schnorr

Henri Cohen (1989)

Journal de théorie des nombres de Bordeaux

Dans cette note nous décrivons différentes méthodes utilisées en pratique pour calculer le nombre de classes d'un corps quadratique imaginaire ou réel ainsi que pour calculer le régulateur d'un corps quadratique réel. En particulier nous décrivons l'infrastructure de Shanks ainsi que la méthode sous-exponentielle de McCurley.

Capitulation des 2 -classes d’idéaux de Q ( - p q ( 2 + 2 ) ) p q ± 5 mod 8

Abdelmalek Azizi, Mohammed Talbi (2009)

Annales mathématiques Blaise Pascal

Soient K = Q ( - p q ( 2 + 2 ) ) p et q deux nombres premiers différents tels que p q ± 5 mod 8 , K 2 ( 1 ) le 2 -corps de classes de Hilbert de K , K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) et G le groupe de Galois de K 2 ( 2 ) / K . D’après [4], la 2 -partie C 2 , K du groupe de classes de K est de type ( 2 , 2 ) , par suite K 2 ( 1 ) contient trois extensions F i / K  ; i = 1 , 2 , 3 . Dans ce papier, on s’interesse au problème de capitulation des 2 -classes d’idéaux de K dans F i ...

Currently displaying 41 – 60 of 453