Displaying 101 – 120 of 173

Showing per page

On relative integral bases for unramified extensions

Kevin Hutchinson (1995)

Acta Arithmetica

0. Introduction. Since ℤ is a principal ideal domain, every finitely generated torsion-free ℤ-module has a finite ℤ-basis; in particular, any fractional ideal in a number field has an "integral basis". However, if K is an arbitrary number field the ring of integers, A, of K is a Dedekind domain but not necessarily a principal ideal domain. If L/K is a finite extension of number fields, then the fractional ideals of L are finitely generated and torsion-free (or, equivalently, finitely generated and...

On the Galois structure of the square root of the codifferent

D. Burns (1991)

Journal de théorie des nombres de Bordeaux

Let L be a finite abelian extension of , with 𝒪 L the ring of algebraic integers of L . We investigate the Galois structure of the unique fractional 𝒪 L -ideal which (if it exists) is unimodular with respect to the trace form of L / .

On the infinite fern of Galois representations of unitary type

Gaëtan Chenevier (2011)

Annales scientifiques de l'École Normale Supérieure

Let E be a CM number field, p an odd prime totally split in  E , and let  X be the p -adic analytic space parameterizing the isomorphism classes of  3 -dimensional semisimple p -adic representations of  Gal ( E ¯ / E ) satisfying a selfduality condition “of type U ( 3 ) ”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in  X has dimension at least 3 [ E : ] . As important steps, and in any rank, we prove that any first order...

On the ring of p -integers of a cyclic p -extension over a number field

Humio Ichimura (2005)

Journal de Théorie des Nombres de Bordeaux

Let p be a prime number. A finite Galois extension N / F of a number field F with group G has a normal p -integral basis ( p -NIB for short) when 𝒪 N is free of rank one over the group ring 𝒪 F [ G ] . Here, 𝒪 F = 𝒪 F [ 1 / p ] is the ring of p -integers of F . Let m = p e be a power of p and N / F a cyclic extension of degree m . When ζ m F × , we give a necessary and sufficient condition for N / F to have a p -NIB (Theorem 3). When ζ m F × and p [ F ( ζ m ) : F ] , we show that N / F has a p -NIB if and only if N ( ζ m ) / F ( ζ m ) has a p -NIB (Theorem 1). When p divides [ F ( ζ m ) : F ] , we show that this descent property...

On the trace of the ring of integers of an abelian number field

Kurt Girstmair (1992)

Acta Arithmetica

Let K, L be algebraic number fields with K ⊆ L, and O K , O L their respective rings of integers. We consider the trace map T = T L / K : L K and the O K -ideal T ( O L ) O K . By I(L/K) we denote the group indexof T ( O L ) in O K (i.e., the norm of T ( O L ) over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of T ( O L ) (Theorem 1). The case...

On wild ramification in quaternion extensions

G. Griffith Elder, Jeffrey J. Hooper (2007)

Journal de Théorie des Nombres de Bordeaux

This paper provides a complete catalog of the break numbers that occur in the ramification filtration of fully and thus wildly ramified quaternion extensions of dyadic number fields which contain - 1 (along with some partial results for the more general case). This catalog depends upon the refined ramification filtration, which as defined in [2] is associated with the biquadratic subfield. Moreover we find that quaternion counter-examples to the conclusion of the Hasse-Arf Theorem are extremely rare...

p -adic Abelian Stark conjectures at s = 1

David Solomon (2002)

Annales de l’institut Fourier

A p -adic version of Stark’s Conjecture at s = 1 is attributed to J.-P. Serre and stated (faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and work of Rubin) on the complex abelian case, we give a new approach to such a conjecture for real ray-class extensions of totally real number fields. We study the coherence of our p -adic conjecture and then formulate some integral refinements, both alone and in combination with its complex analogue. A ‘Weak Combined Refined’ version...

Currently displaying 101 – 120 of 173