Simplicity of twists of abelian varieties
We give some easy necessary and sufficient criteria for twists of abelian varieties by Artin representations to be simple.
We give some easy necessary and sufficient criteria for twists of abelian varieties by Artin representations to be simple.
Soient un corps de nombres, son anneau d’entiers et un groupe d’automorphismes de . L’objet de cet article est l’étude de en tant que -module sans hypothèse de ramification modérée. On montre que la classe de est triviale dans certains groupes de Grothendieck dépendant de l’ensemble des nombres premiers sauvagement ramifiés dans .
In this paper, we study the cohomological dimension of groups , where is the maximal pro--extension of a number field , unramified outside a finite set of places of . This dimension is well-understood only when contains all places above ; in the case where only some of the places above are contained in , one can still obtain some results if contains at least one -extension . Indeed, in that case, the study of the -module allows one to give sufficient conditions for the pro--group...
Nous développons – en nous appuyant sur l’exemple concret des unités cyclotomiques et du groupe de classes en théorie d’Iwasawa cyclotomique – de nouveaux outils pour une étude générale de la descente et de la codescente, dans l’optique de comparer ces deux points de vue duaux.Si est un « système normique » (i.e. une collection de modules galoisiens avec données supplémentaires), attaché à une extension de Lie -adique fixée d’algèbre d’Iwasawa , nous montrons principalement qu’il existe un...
For an algebraic number field k and a prime number p (if p = 2, we assume that μ4 ⊂ k), we study the maximal rank ρk of a free pro-p- extension of k. We give various interpretations of 1 + r2(k) - ρk. The first uses Iwasawa theory, the second uses the envelope of a module and the third is local-global. These expressions confirm that 1 + r2 - ρk is related to the torsion of a certain Iwasawa module, hence to the dualizing module of a certain Galois group (under Leopoldt's conjecture).
Tate sequences play a major role in modern algebraic number theory. The extension class of a Tate sequence is a very subtle invariant which comes from class field theory and is hard to grasp. In this short paper we demonstrate that one can extract information from a Tate sequence without knowing the extension class in two particular situations. For certain totally real fields K we will find lower bounds for the rank of the ℓ-part of the class group Cl(K), and for certain CM fields we will find lower...
Let be a complete discretely valued field with perfect residue field . Assuming upper bounds on the relation between period and index for WC-groups over , we deduce corresponding upper bounds on the relation between period and index for WC-groups over . Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of LLR models of torsors under abelian varieties with good reduction and...