Sur la monogeneite de l'anneau des entiers de certains corps de rayon.
Soit un corps quadratique imaginaire, soient et ses deux -extensions naturelles (la cyclotomique et la prodiédrale), et soit son 2-corps de classes de Hilbert. Soient le complété en 2 de , ou 1, égale à 1 si et seulement si tout diviseur impair de est congru à , ou 1 le 2-rang de Gal, et ou 2 le 2-rang de Gal On a , et des considérations cohomologiques élémentaires nous donnent d’autres contraintes entre , et , mais nous trouvons 2 obstructions supplémentaires de nature...
Soit le -groupe des classes d’idéaux d’une extension cyclique de degré premier et soit ( générateur de ). Un procédé généralisant la formule de Chevalley (formule des classes “ambiges”) permet de déterminer et l’ordre de à partir de . On obtient donc une méthode qui permet, d’une part, une détermination effective de la structure de et, d’autre part, une étude générale des problèmes de -classes d’idéaux.
Soit le -groupe des classes d’idéaux d’une extension cyclique de degré premier et soit ( générateur de ). Un procédé généralisant la formule de Chevalley (formule des classes “ambiges”) permet de déterminer et l’ordre de à partir de . On obtient donc une méthode qui permet, d’une part, une détermination effective de la structure de et, d’autre part, une étude générale des problèmes de -classes d’idéaux.
On considère dans cet article les pro--extensions maximales à ramification restreinte au-dessus de la -extension cyclotomique d’un corps de nombres. Leur groupe de Galois est étudié, d’abord à travers le rang de la partie -libre de leur abélianisé, puis par leurs nombres minimaux de générateurs et de relations. Pour cela, on utilise la théorie des corps de classes, et on reprend les éléments de l’étude par Koch des pro--extensions à ramification restreinte maximales, qui fonctionnent dans ce...
Soient le corps quadratique réel (respectivement le corps biquadratique ), un entier positif sans facteur carré, une extension cubique cyclique non ramifiée de , diédrale sur totalement réelle, (respectivement diédrale sur .)On constate qu’on a deux structures possibles pour le groupe des unités de , notées et .
Let be a biquadratic field, be the Hilbert -class field of and be the Hilbert -class field of . Our goal is to prove that there exists a biquadratic field such that and the group is semi-dihedral. Résumé. Soient un corps biquadratique, le -corps de classes de Hilbert de et le -corps de classes de Hilbert de . Notre but est de prouver qu’il existe des corps biquadratiques réels tels que le groupe est de type et le groupe est semi-diédral.
Soient des nombres premiers tels que, et , où . Soient , , , le 2-corps de classes de Hilbert de et le corps de genres de . La 2-partie du groupe de classes de est de type , par suite contient sept extensions quadratiques non ramifiées et sept extensions biquadratiques non ramifiées . Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe et à étudier la capitulation des 2-classes d’idéaux de dans ces extensions.