Correction to the paper "Hasses's principle for simple algebras over function fields of curves. I".
Nous corrigeons une erreur contenue dans un article précédent où sont données deux définitions prétendument équivalentes du -groupe des classes logarithmiques signées d’un corps de nombres.
On page 211, line 9, and on page 213, line -6, the assumption should be added that F is not the product of generalized cyclotomic polynomials.
In this paper, we give asymptotic formulas for the number of cyclic quartic extensions of a number field.
For each transitive permutation group on letters with , we give without proof results, conjectures, and numerical computations on discriminants of number fields of degree over such that the Galois group of the Galois closure of is isomorphic to .
Consider the group over the ring of algebraic integers of a number field . Define the height of a matrix to be the maximum over all the conjugates of its entries in absolute value. Let be the number of matrices in with height bounded by . We determine the asymptotic behaviour of as goes to infinity including an error term,with being the degree of . The constant involves the discriminant of , an integral depending only on the signature of , and the value of the Dedekind zeta function...