Le Veque's superelliptic equation over function fields
Le “principe de fonctorialité”, conjecturé par Langlands à la fin des années 60, est un moyen remarquablement synthétique d’unifier et exprimer certains liens profonds entre formes automorphes, arithmétique et géométrie algébrique. Son apparente simplicité contraste fortement avec la difficulté des techniques utilisées pour l’aborder. Parmi celles-ci, la stabilisation de la formule des traces d’Arthur–Selberg bute depuis 25 ans sur une conjecture d’analyse harmonique sur des groupes -adiques :...
Let d ≥ 2 be a square-free integer and for all n ≥ 0, let be the length of the continued fraction expansion of . If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].