The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 401 – 420 of 569

Showing per page

On the image of Λ -adic Galois representations

Ami Fischman (2002)

Annales de l’institut Fourier

We explore the question of how big the image of a Galois representation attached to a Λ -adic modular form with no complex multiplication is and show that for a “generic” set of Λ -adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.

On the infinite fern of Galois representations of unitary type

Gaëtan Chenevier (2011)

Annales scientifiques de l'École Normale Supérieure

Let E be a CM number field, p an odd prime totally split in  E , and let  X be the p -adic analytic space parameterizing the isomorphism classes of  3 -dimensional semisimple p -adic representations of  Gal ( E ¯ / E ) satisfying a selfduality condition “of type U ( 3 ) ”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in  X has dimension at least 3 [ E : ] . As important steps, and in any rank, we prove that any first order...

On the irreducibility of 0,1-polynomials of the form f(x)xⁿ + g(x)

Michael Filaseta, Manton Matthews, Jr. (2004)

Colloquium Mathematicae

If f(x) and g(x) are relatively prime polynomials in ℤ[x] satisfying certain conditions arising from a theorem of Capelli and if n is an integer > N for some sufficiently large N, then the non-reciprocal part of f(x)xⁿ + g(x) is either identically ±1 or is irreducible over the rationals. This result follows from work of Schinzel in 1965. We show here that under the conditions that f(x) and g(x) are relatively prime 0,1-polynomials (so each coefficient is either 0 or 1) and f(0) = g(0) = 1, one...

On the irreducible factors of a polynomial over a valued field

Anuj Jakhar (2024)

Czechoslovak Mathematical Journal

We explicitly provide numbers d , e such that each irreducible factor of a polynomial f ( x ) with integer coefficients has a degree greater than or equal to d and f ( x ) can have at most e irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.

Currently displaying 401 – 420 of 569