Displaying 521 – 540 of 3416

Showing per page

Class numbers of totally real fields and applications to the Weber class number problem

John C. Miller (2014)

Acta Arithmetica

The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's discriminant bounds. We describe a new technique for determining the class number of such fields, allowing us to attack the class number problem for a large class of number fields not treatable by previously known methods. We give an application to Weber's...

Classes de Steinitz d’extensions à groupe de Galois A 4

Marjory Godin, Bouchaïb Sodaïgui (2002)

Journal de théorie des nombres de Bordeaux

Soient k un corps de nombres et 𝒞 l ( k ) son groupe des classes. Une extension de k à groupe de Galois isomorphe au groupe alterné A 4 est dite alternée. Soit E / k une extension cyclique de degré 3 . On calcule la classe de Steinitz, dans 𝒞 l ( k ) , de toute extension alternée contenant E . Sous l’hypothèse que le nombre des classes de k est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de 𝒞 l ( k ) lorsque l’anneau des entiers de E est libre sur celui de k ou 3 ne divise pas l’ordre...

Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés

Georges Gras (1977)

Annales de l'institut Fourier

Pour l premier impair, l’étude du l -groupe des classes d’idéaux des extensions abéliennes de degré premier à l se ramène à celle de groupes notés H ϕ , où ϕ parcourt un certain ensemble de caractères l -adiques irréductibles.Il est démontré, dans cet article, une généralisation des congruences de Leopoldt et Fresnel entre les fonctions L l l -adiques et les nombres de Bernoulli généralisés. Cette généralisation conduit à une amélioration de la connaissance des H ϕ  : en effet, la juxtaposition de ce résultat...

Classes et unités des extensions cycliques réelles de degré 4 de 𝐐

Marie-Nicole Gras (1979)

Annales de l'institut Fourier

Soit K une extension cyclique réelle de degré 4 de Q de sous-corps quadratique k . Nous déterminons le nombre de classes et les unités de K puis nous montrons que le problème de la “capitulation” de classes de k dans K est caractérisé par des propriétés élémentaires des unités de K . Nous avons obtenu une table numérique du nombre de classes, des unités ainsi que de l’éventuelle “capitulation” d’une classe, pour tous les corps K de conducteur f < 4000  ; nous en publions ici un extrait.

Classes logarithmiques signées des corps de nombres

Jean-François Jaulent (2000)

Journal de théorie des nombres de Bordeaux

Nous définissons le 2 -groupe des classes logarithmiques signées d’un corps de nombres par analogie avec le groupe des classes d’idéaux au sens restreint et nous établissons les résultats de base de l’arithmétique des classes logarithmiques signées.

Currently displaying 521 – 540 of 3416