Groupe de Galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres.
Le but de cet article est de montrer qu’un ensemble quelconque de quatre racines des polynômes quintiques exhibés par . Darmon forme sous certaines conditions un système fondamental d’unités de la fermeture normale du corps où .
In this work, we study the problem of constructing Haar bases on a product of arbitrary compact zero-dimensional Abelian groups. A general scheme for the construction of Haar functions is given for arbitrary dimension. For dimension d=2, we describe all Haar functions.
It is well known that the continued fraction expansion of readily displays the midpoint of the principal cycle of ideals, that is, the point halfway to a solution of . Here we notice that, analogously, the point halfway to a solution of can be recognised. We explain what is going on.