Splitting of Hermitian Forms over Group Rings.
Let K/k be a ℤₚ-extension of a number field k, and denote by kₙ its layers. We prove some stabilization properties for the orders and the p-ranks of the higher Iwasawa modules arising from the lower central series of the Galois group of the maximal unramified pro-p-extension of K (resp. of the kₙ).
Stark’s conjectures connect special units in number fields with special values of -functions attached to these fields. We consider the fundamental equality of Stark’s refined conjecture for the case of an abelian Galois group, and prove it when this group has exponent . For biquadratic extensions and most others, we prove more, establishing the conjecture in full.
The Steinitz class of a number field extension is an ideal class in the ring of integers of , which, together with the degree of the extension determines the -module structure of . We denote by the set of classes which are Steinitz classes of a tamely ramified -extension of . We will say that those classes are realizable for the group ; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some...