Displaying 121 – 140 of 291

Showing per page

Stabilization in non-abelian Iwasawa theory

Andrea Bandini, Fabio Caldarola (2015)

Acta Arithmetica

Let K/k be a ℤₚ-extension of a number field k, and denote by kₙ its layers. We prove some stabilization properties for the orders and the p-ranks of the higher Iwasawa modules arising from the lower central series of the Galois group of the maximal unramified pro-p-extension of K (resp. of the kₙ).

Stark's conjecture in multi-quadratic extensions, revisited

David S. Dummit, Jonathan W. Sands, Brett Tangedal (2003)

Journal de théorie des nombres de Bordeaux

Stark’s conjectures connect special units in number fields with special values of L -functions attached to these fields. We consider the fundamental equality of Stark’s refined conjecture for the case of an abelian Galois group, and prove it when this group has exponent 2 . For biquadratic extensions and most others, we prove more, establishing the conjecture in full.

Steinitz classes of some abelian and nonabelian extensions of even degree

Alessandro Cobbe (2010)

Journal de Théorie des Nombres de Bordeaux

The Steinitz class of a number field extension K / k is an ideal class in the ring of integers 𝒪 k of k , which, together with the degree [ K : k ] of the extension determines the 𝒪 k -module structure of 𝒪 K . We denote by R t ( k , G ) the set of classes which are Steinitz classes of a tamely ramified G -extension of k . We will say that those classes are realizable for the group G ; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some...

Currently displaying 121 – 140 of 291