Displaying 161 – 180 of 3416

Showing per page

A Stark conjecture “over 𝐙 ” for abelian L -functions with multiple zeros

Karl Rubin (1996)

Annales de l'institut Fourier

Suppose K / k is an abelian extension of number fields. Stark’s conjecture predicts, under suitable hypotheses, the existence of a global unit ϵ of K such that the special values L ' ( χ , 0 ) for all characters χ of Gal / ( K / k ) can be expressed as simple linear combinations of the logarithms of the different absolute values of ϵ .In this paper we formulate an extension of this conjecture, to attempt to understand the values L ( r ) ( χ , 0 ) when the order of vanishing r may be greater than one. This conjecture no longer predicts the existence...

A survey of computational class field theory

Henri Cohen (1999)

Journal de théorie des nombres de Bordeaux

We give a survey of computational class field theory. We first explain how to compute ray class groups and discriminants of the corresponding ray class fields. We then explain the three main methods in use for computing an equation for the class fields themselves: Kummer theory, Stark units and complex multiplication. Using these techniques we can construct many new number fields, including fields of very small root discriminant.

A Terr algorithm for computations in the infrastructure of real-quadratic number fields

Johannes Buchmann, Ulrich Volmer (2006)

Journal de Théorie des Nombres de Bordeaux

We show how to adapt Terr’s variant of the baby-step giant-step algorithm of Shanks to the computation of the regulator and of generators of principal ideals in real-quadratic number fields. The worst case complexity of the resulting algorithm depends only on the square root of the regulator, and is smaller than that of all other previously specified unconditional deterministic algorithm for this task.

Currently displaying 161 – 180 of 3416