Analyse -adique et congruences des coefficients de la série
Let p be a prime number, ℚp the field of p-adic numbers, and a fixed algebraic closure of ℚp. We provide an analytic version of the normal basis theorem which holds for normal extensions of intermediate fields ℚp ⊆ K ⊆ L ⊆ .
Over a non-archimedean local field the absolute value, raised to any positive power , is a negative definite function and generates (the analogue of) the symmetric stable process. For , this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.
Nous étudions les fonctions -adiques associées à des séries du typedans certains cas, où elles admettent un prolongement méromorphe à avec un nombre fini de pôles et des valeurs aux entiers négatifs algébriques. On retrouve comme cas particulier les fonctions -adiques des corps totalement réels et les fonctions -multiples -adiques.
Fix an integer . Rikuna introduced a polynomial defined over a function field whose Galois group is cyclic of order , where satisfies some mild hypotheses. In this paper we define the family of generalized Rikuna polynomials of degree . The are constructed iteratively from the . We compute the Galois groups of the for odd over an arbitrary base field and give applications to arithmetic dynamical systems.
Let be a finite extension of , let , respectively , be the division fields of level , respectively , arising from a Lubin-Tate formal group over , and let Gal(). It is known that the valuation ring cannot be free over its associated order in unless . We determine explicitly under the hypothesis that the absolute ramification index of is sufficiently large.