The Monodromy of Weighted Homogeneous Singularities
This paper deals with the Nash problem, which consists in comparing the number of families of arcs on a singular germ of surface with the number of essential components of the exceptional divisor in the minimal resolution of this singularity. We prove their equality in the case of the rational double points ().
We describe the set of minimal log discrepancies of toric log varieties, and study its accumulation points.
We describe three-dimensional terminal toric flips. We obtain the complete local description of three-dimensional terminal toric flips.
Let f be an analytic function germ at 0 in C2. We compare the topological complexity of the discriminant curve of f to the one of its polar curve.
Nous donnons un système complet d’invariants de la classe de conjugaison topologique de polynômes de en dehors d’un compact suffisamment grand dans les deux sens suivants : en tant que feuilletages (en oubliant les valeurs des fibres) et en tant que fonctions. Ces invariants sont donnés par un arbre pondéré, fléché et coloré, obtenu à partir de la résolution des singularités du polynôme sur la droite à l’infini. Nous donnons un critère de régularité pour les valeurs d’un polynôme et une description...
This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees)...