Classes caractéristiques secondaires des fibrés plats
Nous construisons dans cet article les classes de Chern et les classes de cycles en cohomologie rigide. Nous démontrons par la suite que ces constructions vérifient bien les propriétés attendues. La cohomologie rigide est donc une cohomologie de Weil.
Étant donnée une variété kählérienne compacte , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type . Lorsque est projective, les traces de ces cônes sur l’espace de Néron–Severi engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
We establish, for smooth projective real curves, an analogue of the classical Clifford inequality known for complex curves. We also study the cases when equality holds.
We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of is glicci, that is, whether every zero-scheme in is glicci. We show that a general set of points in admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in .
We prove that the category of Laumon 1-motives up to isogenies over a field of characteristic zero is of cohomological dimension . As a consequence this implies the same result for the category of formal Hodge structures of level (over ).
2000 Mathematics Subject Classification: Primary 14E15; Secondary 14C05,14L30.In this note we attempt to generalize a few statements drawn from the 3-dimensional McKay correspondence to the case of a cyclic group not in SL(3, C). We construct a smooth, discrepant resolution of the cyclic, terminal quotient singularity of type 1/r(1,1,r−1), which turns out to be isomorphic to Nakamura’s G-Hilbert scheme. Moreover we explicitly describe tautological bundles and use them to construct a dual basis to...
Soient le complémentaire de l’union des diagonales dans et un quotient (éventuellement trivial) de par un sous-groupe du groupe symétrique . Ce travail présente des procédés de compactification de dans des produits de schémas de Hilbert. Notre démarche généralise et unifie des constructions classiques dues à Schubert-Semple, LeBarz-Keel, Kleiman et Cheah. Une étude géométrique plus détaillée est faite pour les cas . Cette étude inclut notamment une classification complète, la détermination...