Comparison theorem between Fourier transform and Fourier transform with compact support
We prove a comparison theorem between Fourier transform without support and and Fourier transform with compact support in the context of arithmetic -modules.
We prove a comparison theorem between Fourier transform without support and and Fourier transform with compact support in the context of arithmetic -modules.
We present a panorama of comparison theorems between algebraic and analytic De Rham cohomology with algebraic connections as coefficients. These theorems have played an important role in the development of -module theory, in particular in the study of their ramification properties (irregularity...). In part I, we concentrate on the case of regular coefficients and sketch the new proof of these theorems given by F. Baldassarri and the author, which is of elementary nature and unifies the complex...
On calcule par des méthodes arithmétiques le groupe de Brauer non ramifié des espaces homogènes de groupes algébriques linéaires sur différents corps. Les formules obtenues font intervenir l’hypercohomologie de complexes de groupes de type multiplicatif.