Displaying 121 – 140 of 1712

Showing per page

Algebraic cobordism of bundles on varieties

Y.-P. Lee, Rahul Pandharipande (2012)

Journal of the European Mathematical Society

The double point relation defines a natural theory of algebraic cobordism for bundles on varieties. We construct a simple basis (over ) of the corresponding cobordism groups over Spec( ) for all dimensions of varieties and ranks of bundles. The basis consists of split bundles over products of projective spaces. Moreover, we prove the full theory for bundles on varieties is an extension of scalars of standard algebraic cobordism.

Algebraic equivalence of real algebraic cycles

Miguel Abánades, Wojciech Kucharz (1999)

Annales de l'institut Fourier

Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.

Algebraic homotopy classes of rational functions

Christophe Cazanave (2012)

Annales scientifiques de l'École Normale Supérieure

Let  k be a field. We compute the set 𝐏 1 , 𝐏 1 N ofnaivehomotopy classes of pointed k -scheme endomorphisms of the projective line 𝐏 1 . Our result compares well with Morel’s computation in [11] of thegroup 𝐏 1 , 𝐏 1 𝐀 1 of  𝐀 1 -homotopy classes of pointed endomorphisms of  𝐏 1 : the set 𝐏 1 , 𝐏 1 N admits an a priori monoid structure such that the canonical map 𝐏 1 , 𝐏 1 N 𝐏 1 , 𝐏 1 𝐀 1 is a group completion.

Algebraic tori as Nisnevich sheaves with transfers

Bruno Kahn (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

We relate R -equivalence on tori with Voevodsky’s theory of homotopy invariant Nisnevich sheaves with transfers and effective motivic complexes.

Algebraically constructible chains

Hélène Pennaneac'h (2001)

Annales de l’institut Fourier

We construct for a real algebraic variety (or more generally for a scheme essentially of finite type over a field of characteristic 0 ) complexes of algebraically and k - algebraically constructible chains. We study their functoriality and compute their homologies for affine and projective spaces. Then we show that the lagrangian algebraically constructible cycles of the cotangent bundle are exactly the characteristic cycles of the algebraically constructible functions.

Algèbres simples centrales sur les corps de fonctions de deux variables

Jean-Louis Colliot-Thélène (2004/2005)

Séminaire Bourbaki

À toute classe dans le groupe de Brauer d’un corps F sont associés deux entiers, l’indice (degré d’un corps gauche représentant la classe) et l’exposant (ordre de la classe dans le groupe de Brauer). L’exposant divise l’indice, mais ne lui est pas nécessairement égal. Lorsque F est un corps de nombres, c’est un théorème des années 1930 qu’exposant et indice coïncident. A. J. de Jong (Duke Math. J. 123 (2004) 71-94) a montré récemment qu’ils coïncident aussi lorsque F est un corps de fonctions de...

Currently displaying 121 – 140 of 1712