The algebraic topology of smooth algebraic varieties
Let and be smooth and projective varieties over a field finitely generated over , and let and be the varieties over an algebraic closure of obtained from and , respectively, by extension of the ground field. We show that the Galois invariant subgroup of Br Br( has finite index in the Galois invariant subgroup of Br. This implies that the cokernel of the natural map Br Br Br is finite when is a number field. In this case we prove that the Brauer–Manin set of the product of...
Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.