Displaying 21 – 40 of 53

Showing per page

Fibrations sur le cercle et surfaces complexes

Anne Pichon (2001)

Annales de l’institut Fourier

Nous donnons des conditions nécessaires et suffisantes pour qu’une variété de dimension 3 se réalise comme bord d’une famille dégénérée de courbes complexes, et pour qu’un entrelacs dans une 3-variété se réalise comme bord d’un germe de fonction analytique en un point d’une surface complexe normale. Ces résultats s’appuient sur une étude des objets topologiques fournis par de telles fonctions holomorphes : soit M une variété de Waldhausen et soit L une union finie, éventuellement vide, de fibres...

Fibre de Milnor motivique à l’infini et composition avec un polynôme non dégénéré

Michel Raibaut (2012)

Annales de l’institut Fourier

Soit k un corps de caractéristique nulle, P un polynôme de Laurent en d variables, à coefficients dans k et non dégénéré pour son polyèdre de Newton à l’infini. Soit d fonctions non constantes f l à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la fibre de Milnor motivique à l’infini de la composée P ( f ) en termes du polyèdre de Newton à l’infini de P . Pour P égal à la somme x 1 + x 2 nous obtenons une formule...

Fibrés logarithmiques sur le plan projectif

Jean Vallès (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous décrivons le schéma des droites de saut des fibrés logarithmiques sur le plan projectif (thm 3.1 de ce texte). Connu, depuis l’article [2] de Dolgachev et Kapranov pour les fibrés de première classe de Chern paire, ce résultat est nouveau lorsque la première classe de Chern est impaire.

Fibrés vectoriels de rang deux sur 2 provenant d’un revêtement double

Jean Vallès (2009)

Annales de l’institut Fourier

Depuis Schwarzenberger et son célèbre article intitulé «  Vector bundles on the projective plane  », on sait que tout fibré de rang deux sur 2 ( ) peut être défini comme l’image directe d’un faisceau inversible sur une surface recouvrant doublement le plan. Ce théorème suggère d’étudier les fibrés de rang deux en fonction de la courbe de ramification du revêtement dont ils proviennent.Ainsi, dans la première partie on démontre que, étant donné un revêtement ramifié le long d’une courbe irréductible...

Foliations in algebraic surfaces having a rational first integral.

Alexis García Zamora (1997)

Publicacions Matemàtiques

Given a foliation F in an algebraic surface having a rational first integral a genus formula for the general solution is obtained. In the case S = P2 some new counter-examples to the classic formulation of the Poincaré problem are presented. If S is a rational surface and F has singularities of type (1, 1) or (1,-1) we prove that the general solution is a non-singular curve.

Currently displaying 21 – 40 of 53