Finite groups of automorphisms of K3 surfaces and the Mathieu group.
Given a foliation F in an algebraic surface having a rational first integral a genus formula for the general solution is obtained. In the case S = P2 some new counter-examples to the classic formulation of the Poincaré problem are presented. If S is a rational surface and F has singularities of type (1, 1) or (1,-1) we prove that the general solution is a non-singular curve.
Ce papier présente les récents progrès concernant les fonctions zêta des hauteurs associées à la conjecture de Manin. En particulier, des exemples où on peut prouver un prolongement méromorphe de ces fonctions sont détaillés.
El artículo es una introducción a la transformación de Fourier-Mukai y sus aplicaciones a varios problemas de móduli, teoría de cuerdas y simetría "mirror". Se desarrollan los fundamentos necesarios para las transformaciones de Fourier-Mukai, entre ellos las categorías derivadas y los functores integrales. Se explican además sus versiones relativas, que se necesitan para precisar la noción de T-dualidad fibrada en variedades de Calabi-Yau elípticas de dimensión tres. Se consideran también varias...