String theory and duality.
Aspinwall, Paul S. (1998)
Documenta Mathematica
Georges Dloussky (1984)
Mémoires de la Société Mathématique de France
Stéphane Druel (1999)
Bulletin de la Société Mathématique de France
Paolo Cascini (2006)
Open Mathematics
For any smooth projective variety, we study a birational invariant, defined by Campana which depends on the Kodaira dimension of the subsheaves of the cotangent bundle of the variety and its exterior powers. We provide new bounds for a related invariant in any dimension and in particular we show that it is equal to the Kodaira dimension of the variety, in dimension up to 4, if this is not negative.
L. Ein (1991)
Mathematische Annalen
Ballico, E., Cossidente, A. (1997)
Mathematica Pannonica
Dan Abramovich (1994)
Compositio Mathematica
M. Cristina Ronconi (1985)
Rendiconti del Seminario Matematico della Università di Padova
Ezio Stagnaro (1978)
Rendiconti del Seminario Matematico della Università di Padova
Caterina Cumino (1977)
Rendiconti del Seminario Matematico della Università di Padova
Lando Degoli (1986)
Collectanea Mathematica
Federico Starnone (1998)
Bollettino dell'Unione Matematica Italiana
M. Artin (1974)
Annales scientifiques de l'École Normale Supérieure
Tetsuji Shioda (1987)
Journal für die reine und angewandte Mathematik
Laurent Bonavero (1996)
Bulletin de la Société Mathématique de France
G. Dloussky (1988)
Mathematische Annalen
Norbert A'Campo (1973)
Annales de l'institut Fourier
Stéphane Lamy (2005)
Publicacions Matemàtiques
We describe the structure of the group of algebraic automorphisms of the following surfaces 1) P1,k x P1,k minus a diagonal; 2) P1,k x P1,k minus a fiber. The motivation is to get a new proof of two theorems proven respectively by L. Makar-Limanov and H. Nagao. We also discuss the structure of the semi-group of polynomial proper maps from C2 to C2.
M. Brion, D. Luna (1987)
Bulletin de la Société Mathématique de France
J. Bertin (1982)
Compositio Mathematica