Displaying 61 – 80 of 260

Showing per page

Computing generalized inverse systems using matrix pencil methods

Andras Varga (2001)

International Journal of Applied Mathematics and Computer Science

We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil...

Constructions for type I trees with nonisomorphic Perron branches

Stephen J. Kirkland (1999)

Czechoslovak Mathematical Journal

A tree is classified as being type I provided that there are two or more Perron branches at its characteristic vertex. The question arises as to how one might construct such a tree in which the Perron branches at the characteristic vertex are not isomorphic. Motivated by an example of Grone and Merris, we produce a large class of such trees, and show how to construct others from them. We also investigate some of the properties of a subclass of these trees. Throughout, we exploit connections between...

Determinants and inverses of circulant matrices with complex Fibonacci numbers

Ercan Altınışık, N. Feyza Yalçın, Şerife Büyükköse (2015)

Special Matrices

Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.

Elementary triangular matrices and inverses of k-Hessenberg and triangular matrices

Luis Verde-Star (2015)

Special Matrices

We use elementary triangular matrices to obtain some factorization, multiplication, and inversion properties of triangular matrices. We also obtain explicit expressions for the inverses of strict k-Hessenberg matrices and banded matrices. Our results can be extended to the cases of block triangular and block Hessenberg matrices. An n × n lower triangular matrix is called elementary if it is of the form I + C, where I is the identity matrix and C is lower triangular and has all of its nonzero entries...

Embedded Lattice and Properties of Gram Matrix

Yuichi Futa, Yasunari Shidama (2017)

Formalized Mathematics

In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm [16] and cryptographic systems with lattice [17].

Equalities for orthogonal projectors and their operations

Yongge Tian (2010)

Open Mathematics

A complex square matrix A is called an orthogonal projector if A 2 = A = A*, where A* denotes the conjugate transpose of A. In this paper, we give a comprehensive investigation to matrix expressions consisting of orthogonal projectors and their properties through ranks of matrices. We first collect some well-known rank formulas for orthogonal projectors and their operations, and then establish various new rank formulas for matrix expressions composed by orthogonal projectors. As applications, we...

Currently displaying 61 – 80 of 260