Displaying 81 – 100 of 308

Showing per page

Déterminants et intégrales de Fresnel

Yves Colin de Verdière (1999)

Annales de l'institut Fourier

On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...

Determinants of (–1,1)-matrices of the skew-symmetric type: a cocyclic approach

Víctor Álvarez, José Andrés Armario, María Dolores Frau, Félix Gudiel (2015)

Open Mathematics

An n by n skew-symmetric type (-1; 1)-matrix K =[ki;j ] has 1’s on the main diagonal and ±1’s elsewhere with ki;j =-kj;i . The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n ≡ 0 mod 4 (skew-Hadamard matrices), but for n ≡ 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (-1; 1)-matrices...

Currently displaying 81 – 100 of 308