Nonnegativity preservation under singular values perturbation.
This paper determines all nonsingular unicyclic mixed graphs on at least nine vertices with at most three Laplacian eigenvalues greater than two.
For a simple graph on vertices and an integer with , denote by the sum of largest signless Laplacian eigenvalues of . It was conjectured that , where is the number of edges of . This conjecture has been proved to be true for all graphs when , and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all ). In this note, this conjecture is proved to be true for all graphs when , and for some new classes of graphs.
The purpose of this paper is to present a modern approach to the analysis of variance (ANOVA) of disconnected resolvable group divisible partially balanced incomplete block (GDPBIB) designs with factorial structure and with some interaction effects completely confounded. A characterization of a factorial experiment with completely confounded interaction is given. The treatment effect estimators and some relations between the matrix F of the reduced normal equations and the information matrix A are...
In this paper, we study positive stability and D-stability of P-matrices.We introduce the property of Dθ-stability, i.e., the stability with respect to a given order θ. For an n × n P-matrix A, we prove a new criterion of D-stability and Dθ-stability, based on the properties of matrix scalings.
The joint spectral radius of a finite set of real matrices is defined to be the maximum possible exponential rate of growth of products of matrices drawn from that set. In previous work with K. G. Hare and J. Theys we showed that for a certain one-parameter family of pairs of matrices, this maximum possible rate of growth is attained along Sturmian sequences with a certain characteristic ratio which depends continuously upon the parameter. In this note we answer some open questions from that paper...
Consider a non-centered matrix with a separable variance profile: Matrices and are non-negative deterministic diagonal, while matrix is deterministic, and is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by the resolvent associated to , i.e. Given two sequences of deterministic vectors and with bounded Euclidean norms, we study the limiting behavior of the random bilinear form: as the dimensions...