Displaying 301 – 320 of 501

Showing per page

On the bounds of Laplacian eigenvalues of k -connected graphs

Xiaodan Chen, Yaoping Hou (2015)

Czechoslovak Mathematical Journal

Let μ n - 1 ( G ) be the algebraic connectivity, and let μ 1 ( G ) be the Laplacian spectral radius of a k -connected graph G with n vertices and m edges. In this paper, we prove that μ n - 1 ( G ) 2 n k 2 ( n ( n - 1 ) - 2 m ) ( n + k - 2 ) + 2 k 2 , with equality if and only if G is the complete graph K n or K n - e . Moreover, if G is non-regular, then μ 1 ( G ) < 2 Δ - 2 ( n Δ - 2 m ) k 2 2 ( n Δ - 2 m ) ( n 2 - 2 n + 2 k ) + n k 2 , where Δ stands for the maximum degree of G . Remark that in some cases, these two inequalities improve some previously known results.

On The Determinant of q-Distance Matrix of a Graph

Hong-Hai Li, Li Su, Jing Zhang (2014)

Discussiones Mathematicae Graph Theory

In this note, we show how the determinant of the q-distance matrix Dq(T) of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph...

On the inertia sets of some symmetric sign patterns

C. M. da Fonseca (2006)

Czechoslovak Mathematical Journal

A matrix whose entries consist of elements from the set { + , - , 0 } is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.

On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution

A. Pajor, L. Pastur (2009)

Studia Mathematica

We consider n × n real symmetric and hermitian random matrices Hₙ that are sums of a non-random matrix H ( 0 ) and of mₙ rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if mₙ/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of H ( 0 ) and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hₙ converges...

On the matrices of central linear mappings

Hans Havlicek (1996)

Mathematica Bohemica

We show that a central linear mapping of a projectively embedded Euclidean n -space onto a projectively embedded Euclidean m -space is decomposable into a central projection followed by a similarity if, and only if, the least singular value of a certain matrix has multiplicity 2 m - n + 1 . This matrix is arising, by a simple manipulation, from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates.

Currently displaying 301 – 320 of 501