Displaying 61 – 80 of 129

Showing per page

Métodos para la actualización de los factores de Q y R de una matriz.

Laureano F. Escudero (1984)

Trabajos de Estadística e Investigación Operativa

Recientemente se han propuesto varios métodos para modificar los factores Q y R de una matriz una vez que se ha eliminado (o añadido) una fila o una columna. Normalmente la descripción de estos métodos se efectúa en el contexto de una determinada aplicación; quizá sea ésta la causa de su escasa difusión.

Minimal c p rank.

Shaked-Monderer, Naomi (2001)

ELA. The Electronic Journal of Linear Algebra [electronic only]

Multi-agent solver for non-negative matrix factorization based on optimization

Zhipeng Tu, Weijian Li (2021)

Kybernetika

This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed...

New results about semi-positive matrices

Jonathan Dorsey, Tom Gannon, Charles R. Johnson, Morrison Turnansky (2016)

Czechoslovak Mathematical Journal

Our purpose is to present a number of new facts about the structure of semipositive matrices, involving patterns, spectra and Jordon form, sums and products, and matrix equivalence, etc. Techniques used to obtain the results may be of independent interest. Examples include: any matrix with at least two columns is a sum, and any matrix with at least two rows, a product, of semipositive matrices. Any spectrum of a real matrix with at least 2 elements is the spectrum of a square semipositive matrix,...

On feebly nil-clean rings

Marjan Sheibani Abdolyousefi, Neda Pouyan (2024)

Czechoslovak Mathematical Journal

A ring R is feebly nil-clean if for any a R there exist two orthogonal idempotents e , f R and a nilpotent w R such that a = e - f + w . Let R be a 2-primal feebly nil-clean ring. We prove that every matrix ring over R is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.

Currently displaying 61 – 80 of 129