Displaying 141 – 160 of 170

Showing per page

The Gerschgorin discs under unitary similarity

Anna Zalewska-Mitura, Jaroslav Zemánek (1997)

Banach Center Publications

The intersection of the Gerschgorin regions over the unitary similarity orbit of a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix satisfies a quadratic equation, and also for matrices having "large" singular values or diagonal entries. This leads to a number of open questions.

The higher rank numerical range of nonnegative matrices

Aikaterini Aretaki, Ioannis Maroulas (2013)

Open Mathematics

In this article the rank-k numerical range ∧k (A) of an entrywise nonnegative matrix A is investigated. Extending the notion of elements of maximum modulus in ∧k (A), we examine their location on the complex plane. Further, an application of this theory to ∧k (L(λ)) of a Perron polynomial L(λ) is elaborated via its companion matrix C L.

Unitary automorphisms of the space of Toeplitz-plus-Hankel matrices

A.K. Abdikalykov, V.N. Chugunov, Kh.D. Ikramov (2015)

Special Matrices

Our motivation was a paper of 1991 indicating three special unitary matrices that map Hermitian Toeplitz matrices by similarity into real Toeplitz-plus-Hankel matrices. Generalizing this result, we give a complete description of unitary similarity automorphisms of the space of Toeplitz-plus-Hankel matrices.

Universal bounds for matrix semigroups

Leo Livshits, Gordon MacDonald, Heydar Radjavi (2011)

Studia Mathematica

We show that any compact semigroup of n × n matrices is similar to a semigroup bounded by √n. We give examples to show that this bound is best possible and consider the effect of the minimal rank of matrices in the semigroup on this bound.

Currently displaying 141 – 160 of 170