Stratification of the discriminant in Reflection groups.
On donne une forme géométrique à la théorie classique des invariants pour le groupe spécial linéaire, le groupe orthogonal et le groupe symplectique. On démontre aussi un critère de normalité pour les variétés algébriques affines où opère un groupe algébrique réductif connexe.
On décrit l’algèbre des invariants de l’action naturelle du groupe sur les pinceaux de formes quintiques binaires.
We discuss the existence of an orthogonal basis consisting of decomposable vectors for all symmetry classes of tensors associated with semi-dihedral groups . In particular, a necessary and sufficient condition for the existence of such a basis associated with and degree two characters is given.
A category of Brauer diagrams, analogous to Turaev’s tangle category, is introduced, a presentation of the category is given, and full tensor functors are constructed from this category to the category of tensor representations of the orthogonal group O or the symplectic group Sp over any field of characteristic zero. The first and second fundamental theorems of invariant theory for these classical groups are generalised to the category theoretic setting. The major outcome is that we obtain presentations...
The usual vector cross product of the three-dimensional Euclidian space is considered from an algebraic point of view. It is shown that many proofs, known from analytical geometry, can be distinctly simplified by using the matrix oriented approach. Moreover, by using the concept of generalized matrix inverse, we are able to facilitate the analysis of equations involving vector cross products.