Page 1 Next

Displaying 1 – 20 of 167

Showing per page

( 0 , 1 ) -matrices, discrepancy and preservers

LeRoy B. Beasley (2019)

Czechoslovak Mathematical Journal

Let m and n be positive integers, and let R = ( r 1 , ... , r m ) and S = ( s 1 , ... , s n ) be nonnegative integral vectors. Let A ( R , S ) be the set of all m × n ( 0 , 1 ) -matrices with row sum vector R and column vector...

( m , r ) -central Riordan arrays and their applications

Sheng-Liang Yang, Yan-Xue Xu, Tian-Xiao He (2017)

Czechoslovak Mathematical Journal

For integers m > r 0 , Brietzke (2008) defined the ( m , r ) -central coefficients of an infinite lower triangular matrix G = ( d , h ) = ( d n , k ) n , k as d m n + r , ( m - 1 ) n + r , with n = 0 , 1 , 2 , , and the ( m , r ) -central coefficient triangle of G as G ( m , r ) = ( d m n + r , ( m - 1 ) n + k + r ) n , k . It is known that the ( m , r ) -central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array G = ( d , h ) with h ( 0 ) = 0 and d ( 0 ) , h ' ( 0 ) 0 , we obtain the generating function of its ( m , r ) -central coefficients and give an explicit representation for the ( m , r ) -central Riordan array G ( m , r ) in terms of the Riordan array G . Meanwhile, the...

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling Shao, Yubin Gao, Wei Gao (2016)

Czechoslovak Mathematical Journal

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 ...

± sign pattern matrices that allow orthogonality

Yan Ling Shao, Liang Sun, Yubin Gao (2006)

Czechoslovak Mathematical Journal

A sign pattern A is a ± sign pattern if A has no zero entries. A allows orthogonality if there exists a real orthogonal matrix B whose sign pattern equals A . Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for ± sign patterns with n - 1 N - ( A ) n + 1 to allow orthogonality.

517.98

A.M. Вершик (1984)

Zapiski naucnych seminarov Leningradskogo

(Homogeneous) markovian bridges

Vincent Vigon (2011)

Annales de l'I.H.P. Probabilités et statistiques

(Homogeneous) Markov bridges are (time homogeneous) Markov chains which begin at a given point and end at a given point. The price to pay for preserving the homogeneity is to work with processes with a random life-span. Bridges are studied both for themselves and for their use in describing the transformations of Markov chains: restriction on a random interval, time reversal, time change, various conditionings comprising the confinement in some part of the state space. These bridges lead us to look...

Currently displaying 1 – 20 of 167

Page 1 Next