Displaying 21 – 40 of 368

Showing per page

On an algorithm for testing T4 solvability of max-plus interval systems

Helena Myšková (2012)

Kybernetika

In this paper, we shall deal with the solvability of interval systems of linear equations in max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and multiplication are replaced by and , where a b = max { a , b } , a b = a + b . The notation 𝔸 x = 𝕓 represents an interval system of linear equations, where 𝔸 = [ b ¯ , A ¯ ] and 𝕓 = [ b ̲ , b ¯ ] are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 solvability and give an algorithm...

On an extension of Fekete’s lemma

Inheung Chon (1999)

Czechoslovak Mathematical Journal

We show that if a real n × n non-singular matrix ( n m ) has all its minors of order m - 1 non-negative and has all its minors of order m which come from consecutive rows non-negative, then all m th order minors are non-negative, which may be considered an extension of Fekete’s lemma.

On best affine unbiased covariance-preserving prediction of factor scores.

Heinz Neudecker (2004)

SORT

This paper gives a generalization of results presented by ten Berge, Krijnen,Wansbeek & Shapiro. They examined procedures and results as proposed by Anderson & Rubin, McDonald, Green and Krijnen, Wansbeek & ten Berge.We shall consider the same matter, under weaker rank assumptions. We allow some moments, namely the variance Ω of the observable scores vector and that of the unique factors, Ψ, to be singular. We require T' Ψ T > 0, where T Λ T' is a Schur decomposition of Ω. As...

On bilinear forms based on the resolvent of large random matrices

Walid Hachem, Philippe Loubaton, Jamal Najim, Pascal Vallet (2013)

Annales de l'I.H.P. Probabilités et statistiques

Consider a N × n non-centered matrix 𝛴 n with a separable variance profile: 𝛴 n = D n 1 / 2 X n D ˜ n 1 / 2 n + A n . Matrices D n and D ˜ n are non-negative deterministic diagonal, while matrix A n is deterministic, and X n is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by Q n ( z ) the resolvent associated to 𝛴 n 𝛴 n * , i.e. Q n ( z ) = 𝛴 n 𝛴 n * - z I N - 1 . Given two sequences of deterministic vectors ( u n ) and ( v n ) with bounded Euclidean norms, we study the limiting behavior of the random bilinear form: u n * Q n ( z ) v n z - + , as the dimensions...

On block triangular matrices with signed Drazin inverse

Changjiang Bu, Wenzhe Wang, Jiang Zhou, Lizhu Sun (2014)

Czechoslovak Mathematical Journal

The sign pattern of a real matrix A , denoted by sgn A , is the ( + , - , 0 ) -matrix obtained from A by replacing each entry by its sign. Let 𝒬 ( A ) denote the set of all real matrices B such that sgn B = sgn A . For a square real matrix A , the Drazin inverse of A is the unique real matrix X such that A k + 1 X = A k , X A X = X and A X = X A , where k is the Drazin index of A . We say that A has signed Drazin inverse if sgn A ˜ d = sgn A d for any A ˜ 𝒬 ( A ) , where A d denotes the Drazin inverse of A . In this paper, we give necessary conditions for some block triangular matrices to have signed...

Currently displaying 21 – 40 of 368