On cardinalities of row spaces of Boolean matrices.
In set theory without the axiom of choice (), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC (AC for linearly ordered families of nonempty sets)—and hence AC (AC for well-ordered families of nonempty sets)— (where is an uncountable regular cardinal), and “for every infinite set , there is a bijection ”, implies the statement “there exists a field such that every vector...
Let be a reductive complex algebraic group, and let denote the algebra of invariant polynomial functions on the direct sum of copies of the representations space of . There is a smallest integer such that generators and relations of can be obtained from those of by polarization and restitution for all . We bound and the degrees of generators and relations of , extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.
It is shown that commutativity of two oblique projectors is equivalent with their product idempotency if both projectors are not necessarily Hermitian but orthogonal with respect to the same inner product.
If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.