Previous Page 3

Displaying 41 – 56 of 56

Showing per page

Some necessary and sufficient conditions for nilpotent n -Lie superalgebras

Baoling Guan, Liangyun Chen, Yao Ma (2014)

Czechoslovak Mathematical Journal

The paper studies nilpotent n -Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel’s theorem for n -Lie superalgebras which is a generalization of those for n -Lie algebras and Lie superalgebras. In addition, as an application of Engel’s theorem, we give some properties of nilpotent n -Lie superalgebras and obtain several sufficient conditions for an n -Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the...

Sur la structure des algèbres de Lie rigides

Roger Carles (1984)

Annales de l'institut Fourier

On étudie la structure des algèbres de Lie rigides sur un corps algébriquement clos de caractéristique 0. Elles sont algébriques. Quand le radical est non nilpotent leur dimension est la même que celle de l’algèbre des dérivations. Quand le radical est nilpotent elle appartient à l’un des cas suivants : parfaite, produit direct d’une algèbre parfaite par le corps de base ou encore toutes les dérivations semi-simples sont intérieures.

Surprising properties of centralisers in classical Lie algebras

Oksana Yakimova (2009)

Annales de l’institut Fourier

Let 𝔤 be a classical Lie algebra, i.e., either 𝔤𝔩 n , 𝔰𝔭 n , or 𝔰𝔬 n and let e be a nilpotent element of 𝔤 . We study various properties of the centralisers 𝔤 e . The first four sections deal with rather elementary questions, like the centre of 𝔤 e , commuting varieties associated with 𝔤 e , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on 𝔤 e * and symmetric invariants of 𝔤 e .

The centralizer of a classical group and Bruhat-Tits buildings

Daniel Skodlerack (2013)

Annales de l’institut Fourier

Let G be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let H be the centralizer of a semisimple rational Lie algebra element of G . We prove that the Bruhat-Tits building 𝔅 1 ( H ) of H can be affinely and G -equivariantly embedded in the Bruhat-Tits building 𝔅 1 ( G ) of G so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let j and j be maps from 𝔅 1 ( H ) to 𝔅 1 ( G ) which preserve the Moy–Prasad filtrations. We prove that...

Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions

Adrien Deloro (2013)

Confluentes Mathematici

We classify quadratic SL 2 ( 𝕂 ) - and 𝔰𝔩 2 ( 𝕂 ) -modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.

Currently displaying 41 – 56 of 56

Previous Page 3