Casimir elements and optimal control
The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group by an abelian group whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra...
It is known that the dual of a compact, connected, non-abelian group may contain no infinite central Sidon sets, but always does contain infinite central -Sidon sets for We prove, by an essentially constructive method, that the latter assertion is also true for every infinite subset of the dual. In addition, we investigate the relationship between weighted central Sidonicity for a compact Lie group and Sidonicity for its torus.
Soit un corps local non archimédien de caractéristique nulle et de caractéristique résiduelle impaire. On décrit explicitement les changements de base des représentations supercuspidales de . C’est une étape vers la description du changement de base des paquets endoscopiques supercuspidaux de .
We establish an explicit connection between the perimeter measure of an open set with boundary and the spherical Hausdorff measure restricted to , when the ambient space is a stratified group endowed with a left invariant sub-Riemannian metric and denotes the Hausdorff dimension of the group. Our formula implies that the perimeter measure of is less than or equal to up to a dimensional factor. The validity of this estimate positively answers a conjecture raised by Danielli, Garofalo...
A real form of a complex semi-simple Lie group has only finitely many orbits in any given -flag manifold . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains in...