La transformation de Fourier Plancherel analytique des groupes de Lie. II : les groupes nilpotents
Partant de la représentation de l’algèbre de Lie du groupe (nilpotent, connexe et simplement connexe) par des opérateurs différentiels rationnels dont l’existence est liée à la conjecture de Gelfand et Kirillov et démontrée dans Nghiêm Xuân Hai (Ann. Inst. Fourier, 33-4 (1983), 95–133), on calcule explicitement la transformation de Fourier-Plancherel de . En particulier, on obtient la mesure de Plancherel comme une mesure à densité sur un ouvert de Zariski du spectre antihermitien du centre...