Displaying 41 – 60 of 112

Showing per page

Lefschetz coincidence numbers of solvmanifolds with Mostow conditions

Hisashi Kasuya (2014)

Archivum Mathematicum

For any two continuous maps f , g between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of f , g . This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.

Left-symmetric algebras, or pre-Lie algebras in geometry and physics

Dietrich Burde (2006)

Open Mathematics

In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs...

Leibniz's rule on two-step nilpotent Lie groups

Krystian Bekała (2016)

Colloquium Mathematicae

Let be a nilpotent Lie algebra which is also regarded as a homogeneous Lie group with the Campbell-Hausdorff multiplication. This allows us to define a generalized multiplication f g = ( f g ) of two functions in the Schwartz class (*), where and are the Abelian Fourier transforms on the Lie algebra and on the dual * and ∗ is the convolution on the group . In the operator analysis on nilpotent Lie groups an important notion is the one of symbolic calculus which can be viewed as a higher order generalization...

Lemme fondamental et endoscopie, une approche géométrique

Jean-François Dat (2004/2005)

Séminaire Bourbaki

Le “principe de fonctorialité”, conjecturé par Langlands à la fin des années 60, est un moyen remarquablement synthétique d’unifier et exprimer certains liens profonds entre formes automorphes, arithmétique et géométrie algébrique. Son apparente simplicité contraste fortement avec la difficulté des techniques utilisées pour l’aborder. Parmi celles-ci, la stabilisation de la formule des traces d’Arthur–Selberg bute depuis 25 ans sur une conjecture d’analyse harmonique sur des groupes p -adiques :...

Les noyaux de Bergman et Szegö pour des domaines strictment pseudo-convexes qui généralisent la boule.

Jean-Jacques Loeb (1992)

Publicacions Matemàtiques

Let G be a complex semi-simple group with a compact maximal group K and an irreducible holomorphic representation ρ on a finite dimensional space V. There exists on V a K-invariant Hermitian scalar product. Let Ω be the intersection of the unit ball of V with the G-orbit of a dominant vector. Ω is a generalization of the unit ball (case obtained for G = SL(n,C) and ρ the natural representation on Cn).We prove that for such manifolds, the Bergman and Szegö kernels as for the ball are rational fractions...

Currently displaying 41 – 60 of 112