Erratum to "Proper holomorphic mappings in the special class of Reinhardt domains" (Ann. Polon. Math. 92 (2007), 285-297)
Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes tels que l’opérateur de Hankel sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten quand tend vers et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. Abstract....
Let and be holomorphic self-maps of the unit disk, and denote by , the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.
In this paper, we give precise isotropic and non-isotropic estimates for the Bergman and Szegö projections of a bounded pseudoconvex domain whose boundary points are all of finite type and with locally diagonalizable Levi form. Additional local results on estimates of invariant metrics are also given.
Sharp geometrical lower and upper estimates are obtained for the Bergman kernel on the diagonal of a convex domain D ⊂ ℂⁿ which does not contain complex lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of D does not exceed a constant depending only on n.
This is a short description of some results obtained by Ewa Damek, Andrzej Hulanicki, Richard Penney and Jacek Zienkiewicz. They belong to harmonic analysis on a class of solvable Lie groups called NA. We apply our results to analysis on classical Siegel domains.
Using explicit integral formulas introduced by Skoda, we obtain Hölder estimates for the δ-equation in convex domains of finite type in C2.
In Example 1, we describe a subset X of the plane and a function on X which has a -extension to the whole for each finite, but has no -extension to . In Example 2, we construct a similar example of a subanalytic subset of ; much more sophisticated than the first one. The dimensions given here are smallest possible.
L’existence de solutions holomorphes locales d’équations aux dérivées partielles d’ordre infini à coefficients holomorphes de type spécial est étudiée.